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be considered to depend on volume only, they give no 
contribution to the pure shear elastic constants. 

Bardeen20 and others19 •21,22 have deduced pressure­
volume relations for the alkali metals and compared 
the results with experimental p-V relations. Bardeen 
used Bridgman's23 values of l1 V /Vo vs pressure for the 
alkali metals, making an extrapolation to OaK of meas­
urements made at 293°K. Since that time, ccmpression 
measurements on the alkali metals have been made by 
Swensonl3 at 4.2°K, and measurements on single crystals 
of sodium by the present author give vaiues of the 
adiabatic bulk modulus and its pressure variation at 
room temperature more directly. The ques tion arises 
then, which data to use in this interpretation. 

Comparison of the results derived from Bridgman's 
compression data for sodium taken at 293°K and from 
Swenson's data taken at 4.2°K and shown in Tables I 
and II indicates that the initial bulk modulus increases 
about 15% in going from 293° to 4.2°, but that the 
initial values of dB/dP are essentially the same for the 
two temperatures. The low-temperature value of com­
pressibility of sodium calculated from Swenson's data 
is about 15% above the OaK value computed by 
Bardeen by theoretical extrapolation from the high 
temperature Bridgman data and displayed in Bardeen's 
Fig. 2.20 Examination of the results obtained by 
Quimby and SiegeJ11 for the adiabatic bulk modulus of 
sodium obtained over the range 80 to 2100 K indicates 
an expected change of about 18% in going from 293°K 
to 4°K. However, their absolute values of B. are out of 
line with those found by other investigators as shown 
in Table II . 

We have chosen to apply the initial value of BT 
derived from Swenson's low temperature data and our 
own value of dB,JdP measured at room temperature on 
single crystals. 

The bulk modulus B and its variation with volume 
dBld lnn may be written in terms of the cohesive 
energy per atom as follows: 

a
2EI noB=n~-

an2 D~!lo, 

and for EF we take the expression EF=BI (n/ no)!. 
These expressions are only approximate in that they 
assume (1) that the values of the wave function near 
the boundaries of the atomic polyhedra do not differ 
appreciably from the free electron value, and (2) that 
the average effective mass of the electrons does not 
depend on the atomic volume for values near the equilib­
rium volume. The results given in this paper in the 
section concerned with volume variation of the shear 
elastic constants already indicates failure .of these 
assumptions. Let us proceed with the approximate ex­
pressions, however, using e:>:perimental data to evaluate 
the constants A, B, and C, then to examine directly the 
effects of the failures of the assumptions by comparison 
of A, B, and C with the theoretically expected values. 
The experimental data used are: 

1. The sum of the atomic heat of sublimation and the 
ionization potential. 

2. The lattice parameter. 
3. The bulk modulus. 

All are to be taken at OaK and evaluated at P=O. In 
order, these three conditions yield the following equa­
tions in terms of the constants A, B, and C of the 
equation of state, 

ABC 
Ec=--+----- : (8) 

(n/no) (ni no)! (n/ no) ! 

10.04X10-12 erg atom-I=A+B-C, 

. 0 erg atom-I=-3A-2B+C, 

24.66X1O-12 erg atom-l = 18A+lOB-4C. 

Simultaneous solution of these yields: 

The value of 

A = 2.29X 10-12 erg atom-l, 

B= 5.46X10-12 erg atom-I, 

C=17.79X10-12 erg atom-I. 

n dB I 
d Inn !l=!lo' 

dB a
2
E a3EI 

no--=n~-+na- . 
d In12 a122 ana!l =!lo 

(6) predicted by these equations and called the "empirical" 
value is given by: 

The cohesive energy per atom may be written as the 
sum of the energy of the lowest electronic state plus the 
average Fermi energy, i.e., Ec=Eo+Er. Following 
Frohlich2l and Bardeen,20 we take as an approximate 
expression for Eo applicable to atomic volumes near the 
equilibrium volume; 

A C 
Eo=------, 

(12/ nu) (121120) I 
(7) 

U H. Frohlich, Proc. Roy. Soc. (l_ondon) A158, 97 (1937). 
2: T. S. Kuhn and J. H. Van Vleck, Phys. Rev. 79,382 (1950). 
Z3 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 72, 207 (1938). 
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= -8.73X 10-12 erg atom-I. 

Table III contains these values, and for comparison, a 
theoretical value for B from the free electron equation 
for the Fermi energy with lIl*=m, ancl a theoretical 
value for C equalling the electrostatic energy of a 
uniform sphere with volume Q of one electronic charge 
surrounding a positive ion, omitting the electro~tatic . 
self energy of the electronY 


